
ORIGINAL PAPER

Pharmacophore modeling and virtual screening studies
to identify new c-Met inhibitors

Wenting Tai & Tao Lu & Haoliang Yuan &

Fengxiao Wang & Haichun Liu & Shuai Lu & Ying Leng &

Weiwei Zhang & Yulei Jiang & Yadong Chen

Received: 31 October 2011 /Accepted: 5 December 2011 /Published online: 28 December 2011
# Springer-Verlag 2011

Abstract Mesenchymal epithelial transition factor (c-Met) is
an attractive target for cancer therapy. Three-dimensional
pharmacophore hypotheses were built based on a set of
known structurally diverse c-Met inhibitors. The best pharma-
cophore model, which identified inhibitors with an associated
correlation coefficient of 0.983 between their experimental
and estimated IC50 values, consisted of two hydrogen-bond
acceptors, one hydrophobic, and one ring aromatic feature.
The highly predictive power of the model was rigorously
validated by test set prediction and Fischer’s randomization
method. The high values of enrichment factor and receiver
operating characteristic (ROC) score indicated the model per-
formed fairly well at distinguishing active from inactive com-
pounds. The model was then applied to screen compound
database for potential c-Met inhibitors. A filtering protocol,
including druggability and molecular docking, were also ap-
plied in hits selection. The final 38molecules, which exhibited

good estimated activities, desired binding mode and favorable
drug likeness were identified as potential c-Met inhibitors.
Their novel backbone structures could be served as scaffolds
for further study, which may facilitate the discovery and
rational design of potent c-Met kinase inhibitors.
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Introduction

Receptor tyrosine kinases (RTKs) play a key role in the
regulation of many intracellular signal transduction pathways
and they can coordinate a range of downstream cellular pro-
cesses. Overexpression, dysregulation or inappropriate activa-
tion of RTKs can affect cell survival, proliferation, motility
and lead to the development, maintenance and progression of
human cancers. Therefore, members of the RTK family are
attractive targets for cancer therapy as inhibition can disrupt
signaling pathways that mediate tumor formation and growth.
c-Met kinase is a member of this family that, together with its
ligand, hepatocyte growth factor (HGF), is important for
normal mammalian development [1, 2].

c-Met and HGF are widely expressed in a variety of tissues,
and they are each required for normal mammalian development
and have been shown to be particularly important in cell pro-
liferation, migration, differentiation, and organization of three-
dimensional tubular structures as well as cell growth and an-
giogenesis. However, in a number of major human cancers,
both c-Met and HGF are shown to be deregulated and correla-
tion with poor prognosis [3]. The overexpression of c-Met was
found in most cancers, including brain, colorectal, gastric, lung,
head and neck, stomach cancers and other carcinomas [4].
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The binding of HGF to c-Met leads to the activation of
HGF/SF-c-Met signal transduction pathway. It induces re-
ceptor dimerisation and autophosphorylation of multiple
tyrosine residues within the activation loop of the tyrosine
kinase domain [5]. Activation of c-Met results in the binding
and phosphorylation of adaptor proteins such as Gab-1,
Grb-2, Shc, and c-Cbl, subsequent activation of signal mole-
cules such as PI-3 K, PLC-γ, STAT, ERK1/2, FAK and their
corresponding signal pathways. Besides, c-Met signaling can
also interact with focal adhesion complexes and non-kinase
binding partners such asβ4 integrins, CD44, and semaphorins,
which may further add to the complexity of regulation of cell
function by this receptor [3].

Since HGF/SF-c-Met pathway plays such an important role
in tumor progression, it is significant to discover novel c-Met
inhibitors. Small-molecular inhibitors of c-Met compete for
the adenosine triphosphate (ATP) binding site in the tyrosine
kinase domain and prevent receptor transactivation and re-
cruitment of the downstream effectors. The c-Met inhibitors
are divided into two types according to their chemotypes and
binding modes. Type I inhibitors (SU-11274-like) bind the c-
Met kinase domain in the activated DFG-in conformation.
They are characterized by a diverse range of structures, which
are reasonably selective, have a compact, U-shaped confor-
mation and show resistance to Tyr1230 mutation. In contrast
to Type I inhibitors, those that bind in the inactivated DFG-out
conformation are classified as Type II ligands (AM7-like).
They are typically less selective and adopt an extended con-
formation that stretches from the kinase linker to the C-helix
pocket. Currently, numerous compounds have been reported
as c-Met inhibitors, but only several c-Met inhibitors have
entered the clinical trials, such as PF-04217903, JNJ-
38877605, AMG-208, MK-2461 and PF-02341066 (Fig. 1)
[6–9]. Despite much effort in the past years, there is no

inhibitor targeting c-Met approved to be used clinically so
far. Therefore, the discovery of more potent and novel scaf-
folds against c-Met kinase is particularly important.

The pharmacophore model, which combines and visualizes
critical features responsible for the inhibitory activity, can be
not only applied to undertake database screening to retrieve
compounds with inhibitory activity against target protein, but
also provide guidance for the rational design to discover novel
inhibitors. To date, there are few papers on pharmacophore
studies of c-Met inhibitors [10, 11]. Here, we reported a
reliable pharmacophore model based on a series of known c-
Met inhibitors. In validation studies, it was demonstrated that
the best pharmacophore model with strong predictive power
achieved a high performance of identifying the active from
inactive compounds. Then, a database screening with the
validated model was performed to discovery novel scaffolds
which can provide good starting points for the design of novel
c-Met kinase inhibitors.

Materials and methods

Collection of dataset

For generating hypotheses, training set molecules ought to
satisfy a certain set of laws like it must be broadly abided by
structurally diverse representatives (minimum 16 compounds)
and wrap an activity range of at least four magnitudes. All the
biologically relevant data must be obtained by homogeneous
processes [12]. For this study, we chose compounds from
Type I inhibitors with a significantly structural diversity as
training and test sets. At last, 23 structurally diverse com-
pounds with activity values (IC50) between 3 nM and 28,300
nM were selected as training set (Fig. 2) [3, 6, 13–19], which

Fig. 1 Chemical structures of
c-Met inhibitors in clinical trials
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Fig. 2 Structures and IC50 values of all 23 training set molecules
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spanned over four magnitudes. There are ten diverse scaffolds
in the training set, including azaindoles, benzyloxyquinolines,
quinoxalines, pyridins and other relevant structures. To vali-
date the hypothesis, the test set was prepared using the same
protocol as training set. Test set (Fig. 3) contained 31 struc-
turally diverse compounds from the training set with a wide
range of activity values. All the compounds in the training and
test set were categorized into four different sets based on their
activity values as high active (IC50 <100 nM, ++++), moderate
active (100≤IC50 <1000 nM, +++), less active (1000≤IC50<
10,000 nM, ++) and inactive (IC50 ≥10,000 nM, +)
compounds.

Conformational analysis

All training and test set compounds were firstly minimized by
Pipeline Pilot V7.5. The conformational space of each com-
pound was extensively sampled utilizing the poling algorithm
within the generation conformation module of Discovery Stu-
dio (DS) 2.5. Conformations were generated by “best confor-
mational” option, with an energy threshold of 20 kcal mol-1

from the locally minimized structure and a maximum limit of
255 conformers per molecule. This step probably identifies the
best spatial arrangement of chemical groups explaining the
activity variations among the training set [20]. Compounds
with their conformational models were then submitted to DS
for generating pharmacophoric hypotheses.

Generation of pharmacophore models

Prior to quantitative pharmacophore development, we con-
ducted a common-feature (HipHop) pharmacophore modeling
study in order to identify the features necessary for potent c-
Met inhibitors. Five c-Met inhibitors (PF-02341066, PF-
04217903, JNJ-38877605, AMG-208,MK-2461) which have
entered clinical research were used to generate HipHop phar-
macophore. Every compound was treated equally by setting
the principal value of 2 and the MaxOmitFeat value of 0. A
five-feature pharmacophore model was constructed using this
method, containing two ring aromatic (RA), two hydrophobic
(HY), and one hydrogen-bond acceptor (HBA) features.

The 23 training set compounds were used to develop a
HypoGen pharmacophore model. Based on the HipHop phar-
macophore features, we selected HBA, HY and RA as the
essential features for hypotheses generation. In addition, the
hydrogen-bond donor (HBD) feature was also included, which
was based on the analyzing of the chemical features in the
training set. For each feature the minimum number is 0 and the
maximum is 5. Default uncertainty value 3 has been changed
to 2 as the activity range in the training set compounds barely
spans the minimum requirement of four orders of magnitude
and also to effectively correlate the training set compounds
with their activity values [21]. All other parameters were kept

as default. Subsequently, pharmacophore hypotheses were
constructed using 3D-QSAR pharmacophore generationmodule
and the top ten scored hypotheses were collected.

The quality of HypoGen pharmacophore hypotheses is best
described by fixed cost, null cost, total cost and other statisti-
cal parameters [22]. Fixed cost represents the simplest model
that fits all data perfectly, while null cost presumes that there is
no relationship in the data and that the experimental activities
are normally distributed around their average value [23]. For
an expected pharmacophore model, the total cost should be
close to the fixed cost, and there should be a significant
difference (>60) between null and total cost to show the over
90% statistical significance of the model. Also, the configu-
ration cost which depends on the complexity or the entropy of
the conformational space being optimized and is constant for a
given data set should have a value less than 17 [24].

Pharmacophore model validation

The main purpose of validating a quantitative pharmacophore
hypothesis is to determine whether it is capable of identifying
active compounds and predicting their activities accurately
[23]. The validated pharmacophore hypothesis can be used in
database screening to identify novel c-Met inhibitors. In this
study, the pharmacophore hypothesis were validated with three
different methods, respectively test set prediction, Fisher’s
randomization test and enrichment factor (E) and receiver
operating characteristic (ROC) curve. In the first validation, a
test set containing 31 compounds that are similarly structurally
diverse to the training set and with a wide range of activity
values was utilized and the inhibitory activity values were
estimated for every test set compound. The second validation
procedure is a cross-validation based on Fischer randomization
methodology with a goal to check whether there is a strong
correlation between the chemical structures and the biological
activity [25, 26]. This is done by randomizing the activity data
associated with the training set compounds. Numbers of phar-
macophore hypotheses were generated using the same parame-
ters used to develop the original hypothesis. If any of the
randomized pharmacophore hypotheses resulted with similar
or better cost or correlation value than the original hypothesis,
then the original hypothesis is considered to be generated by
chance [21]. Finally, in order to determine the capability of the
pharmacophore hypotheses to discriminate active compounds
from other molecules in virtual screening [27], E value and
other statistical parameters were calculated using a small
database containing 168 known c-Met inhibitors and 5827
randomly sampled compounds. The randomly sampled set
served as decoys, which were obtained from a collection
offered by drugbank (subset of random FDA-approved small
molecule drug structures without biological activities on c-
Met reported) [28]. The ROC curve, which was introduced
recently by Triballeau et al. [29], was also applied to evaluate
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Fig. 3 Structures and IC50 values of all 31 test set molecules
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the performance of the pharmacophore hypotheses. We sub-
jected the pharmacophore hypotheses to ROC analysis to
assess their abilities to correctly classify a list of compounds
as actives or inactives [30]. In this case, the validity of a
particular pharmacophore is indicated by the area under the
curve (AUC) of the corresponding ROC curve.

Database screening

Database screening serves the purpose of finding diverse,
potential virtual compounds suitable for further optimization
and provides the preference of having easily available and/
or synthesizable compounds as hits for further steps in drug
development [31]. The validated pharmacophore model was
used as a query for retrieving potential inhibitors from NCI
compound database (260,071 compounds). Lipinski’s rule
of five ((1) not more than five hydrogen bond donors; (2)
not more than ten hydrogen bond acceptors; (3) a molecular
weight under 500 Da; and (4) a partition coefficient log P
less than 5.), was firstly applied to exclude none drug-like
compounds. Then, the best pharmacophore model was used
to screen the qualified compounds with best/flexible searching
option in DS 2.5. The compounds that satisfied all the features
were retrieved as hits and considered in molecular docking
studies.

Molecular docking

Molecular docking is a computational technique that
generates and scores putative protein–ligand complexes
according to their calculated binding affinities. It has
been successfully used for identifying active compounds
by filtering out those that do not fit into the binding sites
[32–34]. In this study, a high resolution (2.20 Å) co-crystal
complex structure of c-Met (PDB code: 2RFS) was selected
for molecular docking.

In order to ensure which program was suitable for dock-
ing c-Met inhibitors accurately, the co-crystal ligand was

redocked with three different programs GOLD, CDOCKER
and Glide. The RMSD values between the docked and
crystal conformations were correspondingly 1.31, 0.24
and 0.20, which revealed that Glide performed best in
reproducing experimental binding conformation of the
ligand. Therefore, Glide was selected for the molecular
docking study. The crystal complex structure was prepared
with the protein preparation wizard workflow. The receptor-
grid file was generated with an enclosing box, which was
defined as the ligand-binding site by centering on the co-
crystal ligand and similar in size. Other parameters were kept
as default. All compounds were prepared with the LigPre
module and then flexibly docked into the binding site with
the extra precision (XP) docking mode selected [11].

Results and discussion

Pharmacophore generation

Ten pharmacophore hypotheses were generated. The cost
values, correlation coefficients, RMSD, and pharmacophore

Table 1 Results of ten
top_scored pharmacophore
hypotheses generated by
HypoGen

null cost0249.214; fixed
cost082.990; configuration
cost 0 15.095.
aCost difference0null cost− total
cost

Hypo Total cost Cost differencea RMSD Correlation Features

1 94.962 154.2522 0.756 0.983 HBA HBA HY RA

2 114.714 134.5 1.617 0.914 HBA HBA HY RA

3 120.135 129.079 1.503 0.930 HBA HBA HY

4 123.951 125.263 1.758 0.899 HBA HBA HY

5 124.792 124.422 1.888 0.881 HBA HBA HY RA

6 125.371 123.843 1.881 0.882 HBA HBA HY RA

7 126.576 122.638 1.914 0.877 HBA HBA HY RA

8 128.108 121.106 1.978 0.868 HBA HBA HY RA

9 128.870 120.344 1.995 0.866 HBA HBA HY RA

10 130.022 119.192 1.988 0.867 HBA HBA HY RA

Fig. 4 The best pharmacophore model Hypo1 with distance con-
straints. Features are color-coded as follows: HBA, green; HY, cyan;
and RA, orange
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features were listed in Table 1. The top ranked hypothesis
(Hypo1), consisting of spatial arrangement of four chemical
features (Fig. 4), including two HBA, one HY, and one RA
features, was identified as the best model. It had the lowest
total cost (94.962), the least difference between total and

fixed cost (11.972), the highest cost difference between null
cost and total cost (154.252), the least RMSD (0.756), and a
strong correlation coefficient (0.983) between experimental
and estimated activities. And the configuration cost of Hypo1
was 15.095, which did not exceed the maximum limit value of

Table 2 Experimental IC50 vs.
estimated IC50 values of training
set compounds based on Hypo1

a Positive value indicates that the
estimated activity is higher
than experimental activity and
negative value indicates that the
estimated activity is lower than
experimental activity.
b Activity scale: high active,
++++ (IC50<100 nM);
moderate active, +++ (100≤
IC50<1000 nM); less active,
++ (1000≤ IC50<10,000 nM);
inactive , + (IC50≥10,000 nM).

Compounds IC50(nM) Errora Activity scaleb

Experimental Estimated Experimental Estimated

1 3 2.41 −1.2 ++++ ++++

2 4 7.82 2.0 ++++ ++++

3 6 8.56 1.4 ++++ ++++

4 17 27.96 1.6 ++++ ++++

5 27 51.72 1.9 ++++ ++++

6 31 35.33 1.1 ++++ ++++

7 40 52.44 1.3 ++++ ++++

8 56 49.31 −1.1 ++++ ++++

9 62 30.03 −2.1 ++++ ++++

10 94 110.48 1.2 ++++ +++

11 205 280.36 1.4 +++ +++

12 300 348.24 1.2 +++ +++

13 320 174.43 −1.8 +++ +++

14 371 351.59 −1.1 +++ +++

15 640 559.87 −1.1 +++ +++

16 1200 2303.48 1.9 ++ ++

17 5000 11,402.20 2.3 ++ +

18 5200 5624.96 1.1 ++ ++

19 7100 2147.51 −3.3 ++ ++

20 8100 6531.67 −1.2 ++ ++

21 10,000 9943.28 −1.0 + ++

22 20,100 11,624.50 −1.7 + +

23 28,300 10,679.10 −2.7 + +

Fig. 5 Comparision of
pharmacophore mapping with
the docked binding models of
two representative compounds.
(a) compound 7, (b) compound
23
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17 and could guarantee the entire conformation space sampled
during the pharmacophore generation.

One method of judging a pharmacophore’s merit is its
ability to predict the activities of individual compounds in
the training set [23–25]. As is shown in Table 2, all the
compounds were correctly estimated by Hypo1 with the error
values less than 10, which means the differences between the
experimental IC50 and predicted IC50 values are less than one
order magnitude. At the same time, an analysis regarding
mapping of the training set compounds on Hypo1 was per-
formed. The analysis revealed that one of the most active
compounds 7 in the training set mapped on all four pharma-
cophoric features of Hypo1. Two amide groups mapped well
onto the two HBA features, respectively. The pyrrole ring
mapped on the HY feature and the indoline group at the end
of the molecule mapped on the RA feature (Fig. 5a); whereas

the least active compound 23 mapped only on two of the four
features, missed one HBA and the RA feature (Fig. 5b). The
fit values of the most and least active compounds are 7.592
and 4.369, respectively. This might be used to explain why
compound 7 was more active than compound 23. Binding
modes of the two compounds were in good agreement with
their pharmacophore mappings (Fig. 5).

Pharmacophore validation

Test set prediction

A test set of 31 c-Met inhibitors was used to validate the best
pharmacophore model Hypo1. Experimental and estimated
activities of the test set compounds are shown in Table 3, as
we can see, most IC50 values of the compounds in the test set

Table 3 Experimental IC50 vs.
estimated IC50 values of test set
compounds based on Hypo1

a Positive value indicates that the
estimated activity is higher
than experimental activity and
negative value indicates that the
estimated activity is lower than
experimental activity.
b Activity scale: high active,
++++ (IC50<100 nM); moderate
active, +++ (100≤ IC50<1000
nM); less active, ++ (1000≤
IC50<10,000 nM); inactive ,
+ (IC50≥10,000 nM).

Compounds IC50(nM) Errora Activity scaleb

Experimental Estimated Experimental Estimated

24 5 3.25 −1.5 ++++ ++++

25 9 8.36 −1.1 ++++ ++++

26 9.3 5.45 −1.7 ++++ ++++

27 12 7.76 −1.5 ++++ ++++

28 14 7.63 −1.8 ++++ ++++

29 15 20.61 1.4 ++++ ++++

30 17 18.28 1.1 ++++ ++++

31 19 28.21 1.5 ++++ ++++

32 20 21.37 1.1 ++++ ++++

33 26 10.02 −2.6 ++++ ++++

34 28 9.16 −3.1 ++++ ++++

35 31 52.31 1.7 ++++ ++++

36 35 20.17 −1.7 ++++ ++++

37 50 58.54 1.2 ++++ ++++

38 55 22.12 −2.5 ++++ ++++

39 70 74.96 1.1 ++++ ++++

40 82 39.89 −2.1 ++++ ++++

41 380 151.38 −2.5 +++ +++

42 390 337.28 −1.2 +++ +++

43 500 291.84 −1.7 +++ +++

44 1100 1179.27 1.1 ++ ++

45 1900 6185.68 3.3 ++ ++

46 2000 1951.00 −1.0 ++ ++

47 2030 5430.81 2.7 ++ ++

48 3500 6133.65 1.8 ++ ++

49 4400 5989.14 1.4 ++ ++

50 5300 2435.29 −2.2 ++ ++

51 5670 6188.64 1.1 ++ ++

52 >10,000 5522.95 −1.8 + ++

53 >10,000 24,228.40 2.4 + +

54 >10,000 27,057.40 2.7 + +
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were estimated properly, with the error values mainly around 2.
Moreover, the regression analysis achieved a high correlation
coefficient of 0.979 (Fig. 6), which suggested a good correla-
tion between the experimental and estimated activities.

Fischer’s randomization method

In order to further validate Hypo1, cross-validation based on
Fischer’s randomization was carried out. A confidence level
of 95% was selected, and then 19 random spreadsheets were
generated. Results of the validation are shown in Fig. 7,

obviously, all values generated after randomization produced
models with no predictive values similar or near to that of
Hypo1. Compared to the corresponding 19 runs, the correla-
tion coefficients of the original hypotheses were the highest
while their total cost values were the lowest, which proved
that Hypo1 was dependable and not generated by chance.

Enrichment factor and ROC curve

A database of 5995 compounds (D) including 168 known
inhibitors (A)was used to further validate the best pharmacophore

Fig. 7 Results of Fischer
randomization test for 95%
confidence level. (a) indicates
Hypo1 has significantly higher
correlation coefficient values
than that of all 19 random
hypotheses; (b) shows Hypo1
has significantly lower cost
values than that of all 19
random hypotheses

Fig. 6 The correlations
between experimental and
estimated activities of training
and test set compounds based
on Hypo1
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in this study. Using the selected pharmacophore model, Hy-
po1, 249 compounds (Ht) were retrieved as hits from the
database screening. Among these hits, 147 (Ha) compounds
were from the 168 known inhibitors. Therefore, the enrich-
ment factor was calculated to be 21.07, which means
that it is 21.07 times more probable to pick active com-
pounds from the database than expected by chance. The
calculated goodness of hit score (GH) value was 0.65, greater
than 0.5, which is significant for any pharmacophore hypoth-
esis (Table 4).

The ROC curve was also used to estimate the perfor-
mance of Hypo1. It can be used to help understand the
tradeoff between model sensitivity (ability to discover true

positives) and specificity (ability to avoid false positives)
[28]. The fit property of the compounds, which indicates the
degree of consistency with Hypo1, was calculated. Thus, the
5995 compounds in the validation database were ranked
according to their fit values. The ROC score (the area under
the ROC curve, AUC) provides a practical way to measure
the overall performance of the model. The closer the ROC
score is to 1.0, the better the model is at distinguishing good
samples from bad ones. ROC curve analysis of Hypo1
yielded the ROC score of 0.896 (Fig. 8), which means that
in eight out of ten cases, a randomly selected active c-Met
inhibitor is ranked higher than an inactive one. These three
validation procedures provided strong confidence on Hy-
po1. Based on these validation results, Hypo1 was capable
enough to be used in database searching to identify novel
leads.

Evaluation of the pharmacophore with the crystal complex

As the crystal structure of c-Met in complex with compound
34 was resolved (PDB code: 3A4P) and the protein–ligand
interactionmodewas revealed [16], it can be utilized to further
evaluate the best pharmacophore Hypo1. As is shown in
Fig. 9a, the scaffold anchored into the ATP pocket by two π-
π stacking interactions and two crucial hydrogen bonds from
hinge region which is located in the binding site of c-Met and
usually hydrophobic: the quinoline accepted one H-bond from
hinge Met1160 while also formed π-π stacking interaction
with Tyr1159, the distal amide accepted one H-bond from
hinge Lys1161, as well as one co-planar π-π stacking interac-
tion of the halogenated benzene ring with Tyr1230.

Fig. 8 ROC curve generated
from screening the database

Table 4 Enrichment factor and goodness of hit score validation for
Hypo1

Parameter Values

Total molecules in database (D) 5995

Total number of actives in database (A) 168

Total hits (Ht) 249

Active hits (Ha) 147

% Yield of actives [(Ha/Ht)×100] 59.04

% Ratio of actives [(Ha/A)×100] 87.50

Enrichment factor (E) [(Ha×D)/(Ht×A)] 21.07

False negatives [A−Ha] 21

False positives [Ht−Ha] 102

Goodness of hit score (GH)a 0.65

a [(Ha/4HtA) (3A+Ht))×(1−((Ht−Ha)/(D−A))]; GH score of >0.6
indicates a very good model.
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When mapped onto Hypo1 by choosing best/flexible
searching option, compound 34 from the crystal structure
fit quite well with all the features of the pharmacophore
(Fig. 9b), the fit value was as high as 8.698. Then the
mapping of Hypo1 with compound 34 was superimposed
to the active site of the crystal complex. The RMSD value
between the mapping conformation of Hypo1 and the original
bound conformation was 1.679, which was low and accept-
able. Figure 9c clearly shows that the essential parts of two
conformations could be generally superimposed, from which
we can also see that the two hydrogen-bond acceptor (HBA)
features were respectively mapped on the two hydrogen bonds
accepted from hinge region, the hydrophobic (HY) features
were mapped on the π-π stacking interaction and consistent
with the character of hinge region, while the ring aromatic
(RA) mapped on the benzene ring which could form π-π
stacking interaction with Tyr1230. These analyses revealed
that Hypo1 contained all the essential features the crystallo-
graphic studies covered, which were consistent with the inter-
action mechanism of c-Met inhibitors. And the results also
suggested Hypo1 was reasonable and reliable enough to

retrieve compounds that fit all the features of the model from
a chemical database.

Database screening

The validated pharmacophore model, Hypo1, was used to do
virtual screening over the NCI database comprised of 260,071
compounds. Based upon Lipinski’s rule of 5, 203,965 drug-
like compounds from NCI database were selected for virtual
screening by the option of search 3D database protocol with
the best search method. A hit list of 9256 compounds match-
ing the pharmacophore model was obtained, which included
some compounds structurally similar to the existing c-Met
kinase inhibitors and novel scaffolds also emerged. Moreover,
the IC50 value of each compound was predicted. To sample a
sufficient chemical space and increase hit-rate, compounds
with estimated IC50 below 1 μM were considered as active
new hits. A set of 1623 hits satisfied the specified cutoff value
was preceded for further evaluation.

Although the hits mapped all the features of Hypo1 and
had high estimated active values, they might not fit into the

Table 5 Analyses of critical
amino acid residues for c-Met
inhibition from nine co-crystal
structures deposited in protein
data bank

PDB code Met1160 Asp1222 Pro1158 Met1161 Tyr1230 Tyr1159

2RFS √ √ √

3CCN √ √ √

3CD8 √ √ √ √

2WD1 √ √ √ √

3A4P √ √ √ √

3I5N √ √ √ √

3DKF √ √ √

2WGJ √ √ √ √

2WKM √ √ √

Fig. 9 (a) Binding mode of
compound 34 in crystal
complex (PDB code: 3A4P);
(b) Pharmacophore mapping of
compound 34; (c)
Superimposed of the mapping
conformation (pink) with
Hypo1 and the original bound
conformation (yellow)
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binding site of c-Met kinase. Thus, molecular docking was
applied to prioritize the compounds by identifying their
capability to interact with the receptor. The results of mo-
lecular docking were demonstrated based on both Glide
GScore and the favorable interactions formed between
ligands and active site.

In this study, with the purpose of further refining the
retrieved hits and also excluding the false positives, all the
1623 drug-like hits were docked into the active site of c-Met
crystal structure using Glide. The scoring functions (GScore)
implemented in Glide were also used for ranking the mole-
cules. We obtained conformations with GScore presented in
ascending order and top 100 compounds were selected for
detailed investigation. In order to ensure whether the com-
pounds did interact with the crucial residues, nine co-crystal
structures of c-Met bound with ligands were analyzed. By
summarizing the interactions between the receptor residues
and the ligands in the co-crystal structures of c-Met, hydrogen
bond interactions with Met1160, Asp1222 and π-π stacking

interactions with Tyr1230 and Tyr1159 were prevalently
found. Table 5 clearly indicates that Met1160 and Tyr1230
were particularly crucial for c-Met binding.

The hit compounds whose docking conformations satis-
fied the binding model and formed key hydrogen bonds and
π-π stacking interactions with crucial residues in the active
site of c-Met were considered as candidates for further
study. The compounds having similar structures with known
inhibitors were rejected for retrieving new scaffolds. Finally,
a small set of 38 hits with favorable drug-like properties,
high estimated IC50 values, good GScores, and desired
docking poses were obtained. Abundant structure diversity
of the final hits demonstrated that hits with similar chemical
features but novel scaffolds could be retrieved with the
pharmacophore model. Figure 10 lists the steps and out-
comes of the database screening and molecular docking
procedure.

Among these hits, compounds NSC48870 andNSC614530,
which are different in their chemical scaffolds, were identified
as promising novel leads against c-Met kinase with high esti-
mated IC50 value of 0.263 μMand 0.483 μM, respectively, and
acceptable GScores. They mapped all the features of Hypo1 by
choosing best/flexible searching option (Fig. 11), and the
docked conformations formed hydrogen bonds and π-π stack-
ing interactions with key residues in the active site of c-Met
(Fig. 11). As they also satisfied all the drug-like properties, the
two lead compounds would be focalized for further refining
and optimizing to discover novel inhibitors with potent activity
against c-Met kinase.

Conclusions

In this work, 3D-QSAR pharmacophore models were suc-
cessfully generated with 23 known c-Met inhibitors. The

Fig. 11 Chemical structures,
pharmacophore mapping and
docked binding models of the
two representative compounds.
(a) NSC48870, (b) NSC614530

Fig. 10 Flowchart of virtual screening procedure applied in this paper
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best pharmacophore model, Hypo1, consisted of two HBA,
one HY, and one RA features. A good predictive power of
the pharmacophore model was validated by test set predic-
tion and Fischer randomization methods. Enrichment factor
of 21.07 and ROC score of 0.896 indicated that Hypo1
performed fairly well at identifying active from inactive
compounds. Moreover, compared with the binding site of
c-Met kinase, Hypo1 represented the essential strucrural
features for the c-Met inhibitors. The results suggested
Hypo1 pharmacophore can serve as a reliable tool for the
discovery of novel c-Met inhibitors. Database screening
with Hypo1 finally retrieved 38 compounds in total, which
satisfied all the drug-like properties, had good estimated
active values and formed crucial interactions. Especially
two compounds, NSC48870 and NSC614530, could serve
as novel scaffolds for further refining and optimizing.
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